Search

29 products
View:
  • Selected: 0
    Applying
  • Selected: 0
    Names
    Loading...
  • Selected: 0
    Manufacturer
  • Selected: 0
    Made in
  • Selected: 1
    Additional
All filters
  • 9
    Applying
  • 21
    Names
    Loading...
  • 4
    Manufacturer
  • 6
    Made in
  • Additional
View:
29 products
KOIDZ-VD Sets of samples of artificial defects and gaps
KOIDZ-VD Sets of samples of artificial defects and gaps
from 0 ₽
KOIDZ-VD kits consist of samples of artificial defects (SAD) and samples of gaps (SG). Samples of artificial defects are made in the form of flat and curved plates and cylinders, on the working surfaces of which defects are made in the form of continuity violations like slits of various depths, opening widths and lengths. The working surfaces of flat SADs are two opposite surfaces on which longitudinal slits are cut by an electroerosion method The working surfaces of the SAD, reproducing a positive curved surface, are samples with a cylindrical surface. The working surface of the SAD reproducing negative curvature is the inner surface of the curved plate — the place of inflection. The KOIDZ-VD kit contains an SAD for determining the influence of various quantities. To determine the effect of the roughness of the working surfaces, the kit contains SADs with different roughness, on which defects of the same depth are made. To determine the effect of positive curvature and surface roughness, the kit contains cylindrical samples with different roughness of working surfaces on which defects of the same depth are made. To determine the simultaneous effect of negative curvature and surface roughness, the kit contains curved plates on which two defects of the same depth are cut, one of which is located on the flat, the other on the curved parts of the sample. To determine the effect of the chemical composition of the material of the controlled products, the kit contains samples of steel 10, steel 20 and steel 45. The same defects are made on each sample. To account for the influence of specific electrical conductivity, the kit contains samples from non-magnetic structural materials: aluminum alloy D16T and titanium alloy VT-23. The same defects are made on each sample. Gap samples are flat and curved plates of different thicknesses made of dielectric material. Technical specifications The range of nominal values of the depth of defects, mm: from 0.1 to 10. The limits of permissible error of the value of the depth of defects, mm: from ± 0.02 to ± 0.25. The range of nominal values of the width of the opening of defects, mm: from 0.03 to 0.15. The limits of the permissible error of the width of the opening of defects, mm: from ± 0.01 to ± 0.05. The range of nominal values of the length of defects, mm: from 6 to 100. The limits of permissible error of the value of the length of defects, mm: from ± 0.5 to ± 1. The range of nominal values of the thickness of the dielectric gap samples, mm: from 0.2 to 10. The limits of the permissible error of the thickness of the samples, mm: from ± 0.02 to ± 0.5. The range of nominal values of the radius of curvature of curved surfaces with defects, mm: - convex: from 13 to 510; - concave: 10.
Produced in: Moscow
UNM-2000/6000 portable magnetizing device
UNM-2000/6000 portable magnetizing device
The principle of operation of the means of magnetic particle control The portable device UNM-2000/6000 of the MANUL series is a magnetic particle flaw detector that provides measurements by the applied field method and the residual magnetization method using direct, alternating and pulsed current with specified parameters. External magnetizing devices included in the kit (solenoids, electromagnets, contact devices for connecting cables) allow for longitudinal, transverse and circular magnetization of the object under study. A special magnetic powder, dry or in the form of an emulsion, is applied to the controlled surface. Inhomogeneities of the magnetic field in the places of defects lead to the accumulation of powder particles, thus "showing" a hidden picture. Design features and advantages of the UNM-2000/6000 powder flaw detector: In the MANUL series, the UNM-2000/6000 device is capable of providing the highest magnetization current (up to 6000 A in pulse mode), which allows you to control products having a large mass or size, as well as those made of magnetohard alloys; The device can be included in automated quality control stands: there are network interfaces (LAN, Bluetooth, Wi-Fi) for connection; microprocessor control provides storage and reproduction of magnetization and demagnetization parameters, logging of control results, automatic demagnetization; The design is modular, allows for changes to implement the individual wishes of the customer; It fully complies with the following standards: GOST R 56512-2015, GOST R 53700-2009 (ISO 9934-3:2002), GOST R 50.05.06-2018, GOST R ISO 10893-5-2016, GOST ISO 17638-2018 , RD 34.17.102-88, RD-13-05-2006 and other Russian and foreign standards regarding the requirements for magnetizing devices and magnetic particle flaw detectors; It is approved for use by industry regulatory documents, in particular, by the Russian Railways. Scope of application Magnetic powder control devices are widely used in various industries, construction and transport, from steel and pipe rolling plants to organizations engaged in the operation and repair of machines, mechanisms and vehicles. Magnetic powder flaw detectors belong to the means of non-destructive testing and therefore can be used to detect defects in products and structures operating under pressure, including at chemical and oil and gas industry enterprises, as well as during the operation of pipelines. In particular, devices for monitoring by the magnetic powder method have proven themselves well at Russian Railways and metro enterprises engaged in the operation and repair of rolling stock, including for the control of shafts, wheels and wheel pairs, gearboxes, springs, couplers and other loaded components and parts. Technical specifications: Magnetization currents: Variable, Pulse, Rectified (only for solenoid and electromagnet) The measurement error of the magnetization current is no more than 10%. Characteristics of the pulse current: The repetition frequency of unipolar current pulses during magnetization and of multipolar current pulses during demagnetization is (2 ± 0.2) Hz. The duration of the current pulses is at least 1.5 ms. Magnetic characteristics of the solenoid: The maximum alternating magnetic field in the center of a single solenoid is at least 100 A/cm. The maximum alternating magnetic field on the axis in the center between two solenoids located at a distance of 200 mm is at least 60 A/cm. The maximum permanent magnetic field in the center of a single solenoid is at least 80 A/cm. The maximum permanent magnetic field on the axis in the center between two solenoids located at a distance of 200 mm is at least 50 A/cm. Values of magnetization currents: The maximum alternating magnetization current in the unwound cable is 6 m × 50 mm2 and on the electrical contacts is at least 2000 A. The maximum pulse magnetization current in an unwound cable of 4 m × 10 mm2 and on electrical contacts is at least 6000 A. The current adjustment range in the solenoids and the electromagnet is from 0.5 to 4.5 A. Characteristics of the electromagnet: The maximum alternating magnetic field in the air gap of the electromagnet depending on the interpolar distance is as follows: - in the 140 mm gap: at least 75 A/cm; - in the 40 mm gap: at least300 A/cm. The maximum constant magnetic field in the air gap of the electromagnet depending on the interpolar distance is as follows: - in the 140 mm gap: at least 100 A/cm; - in the 40 mm gap: at least 400 A/cm. Operating mode: The operating mode is cyclic: magnetization/pause. The magnetization time is adjustable from 1 to 40 s. The demagnetization time is adjustable from 5 to 60 seconds. Demagnetization of parts is performed automatically. The time of setting the operating mode is no more than 15 seconds. The duration of continuous operation is at least 8 hours. Power supply parameters: The device is powered by an AC power supply with a voltage of 220 V and a frequency of 50 Hz. The power consumed from the network is no more than 5 kVA. Overall characteristics: Overall dimensions of the device (w × h × d) – no more than 267×245×465 mm. The weight of the device is not more than 50 kg. Other characteristics: The average worktime before failure is at least 12500 hours. The average recovery time is no more than 6 hours. The average service life of the device is at least 10 years. Сompliance with standards The device fully complies with the requirements of GOST R 56512-2015, GOST R 53700-2009 (ISO 9934-3:2002), GOST R 50.05.06-2018, GOST R ISO 10893-5-2016, GOST ISO 17638-2018, RD 34.17.102-88 and RD-13-05-2006 in terms of the requirements for magnetizing devices and magnetic particle flaw detectors. Identification of the load. It performs automatic identification of the types of connected load: cables, solenoids and electromagnet. Control of the connected load current It allows you to control the current of the connected AC/DC electromagnets and solenoids. The kit includes: 1 Electrical contact with cable, cross section 50 mm2, length 3m 2 Solenoid cable, 3m long 3 Solenoid cable, 0.5m long 4 Magnetizing cable, cross section 10 mm2, length 6m 5 Magnetizing cable, cross section 50 mm2, length 6m 6 Solenoid - 2pcs 7 The electromagnet is manual 8 Trolley 9 Power unit UNM 2000/6000
Produced in: Moscow
VD-20NF Eddy Current Flaw Detector
VD-20NF Eddy Current Flaw Detector
The principle of operation of the VD-20NF eddy current flaw detector The principle of operation of the VD-20NF flaw detector is based on the generation of eddy currents on the surface of the controlled part and subsequent analysis of the signal at the output of the converter, which correlates with the characteristics of the active secondary field. The device consists of two main blocks: electronic one and electromechanical one, in which an eddy current converter of transformer type is installed. The controlled products (bearing rollers) enter through the input tray into the electromechanical unit of the flaw detector, where they move sequentially and fall under the pressure rollers of the overhead converter holder. The clamping mechanism is adjusted to each size of the rollers, so as to ensure tight contact with the curved surface and fix the tip of the transducer at the required distance from it. The detection of defects occurs due to the imbalance of the converter when it is located above the surface of the controlled product, caused by the interaction of the primary electromagnetic field generated by the converter with the secondary electromagnetic field of eddy currents induced in the controlled product by the primary field. When cracks are detected, the electronic unit of the flaw detector gives sound and light warning signals, and also triggers the electromagnet of the sorter, which directs the controlled roller into the tray for defective products. In the absence of defects, the controlled roller is directed towards the output tray of the flaw detector. Design features and advantages The VD-20NF eddy current flaw detector is equipped with removable input and output trays, power-on switches and a drive for feeding controlled products to the converter, as well as handrails for convenient transportation of the unit. The mechanisms of the electromechanical unit are protected by a frame made of steel plates. The electronic unit of the flaw detector is portable and can be installed both on the top panel of the electromechanical unit and on the surface of the desktop. Controls and indications of defect detection are located on the front panel of the electronic unit. The delivery package also includes a power adapter for the electronic unit and a tuning sample. The advantages of the VD-20NF flaw detector include: high reliability (the service life of the flaw detector is more than 10 years); it is easy to set up and operate; it has several types of defect detection alarms; the high probability of detecting defective products (at least 99.9%); low number of false positives (less than 5%). Scope of application According to the current standards of safety and product quality control during repair work in locomotive depots and repair plants, bearing rollers that have passed visual inspection and are recognized as suitable for further operation according to the criteria of geometry and condition of the working surface are subject to mandatory additional control using eddy current flaw detection to detect fatigue cracks invisible during visual inspection on the rolling surface of the rollers. The VD-20NF eddy current flaw detector allows for quality control and automatic disassembly of bearing rollers of various shapes and sizes both in laboratory and factory conditions in full compliance with the requirements of the regulatory documents of Rosstandart and the methods of performing control measurements used in JSC "Russian Railways".
Produced in: Moscow
UNM-300/2000 portable magnetizing device
UNM-300/2000 portable magnetizing device
The principle of operation of the magnetic particle flaw detector: The device provides monitoring and detection of surface defects by the applied field method or by the residual magnetization method. The kit with the device includes power cables, remote solenoids, and an electromagnet, with which you can produce longitudinal or circular magnetization of the part. A trolley is provided for the transportation of technical equipment and the detection of defects in the field. Magnetization is carried out by alternating, direct or pulsed current of large magnitude, due to which high values of the magnetizing field strength are achieved. Features and advantages of the UNM-300/2000 magnetic powder control device: Microprocessor control, which allows you to memorize and accurately reproduce the desired modes and selected measurement parameters, as well as work as part of automated stands and control systems; The magnetizing device has a digital indicator on the front side and a control panel for selecting the operating mode, type and current strength; Automatic recognition of the type of connected external magnetizing device; Device temperature control and automatic shutdown in case of overheating; Remote connected magnetization devices allow you to control the quality of parts and assemblies of complex shape; Automatic demagnetization of controlled assemblies and parts; The equipment meets the requirements of the following standards: GOST R 56512-2015, GOST R 53700-2009 (ISO 9934-3:2002), GOST R 50.05.06-2018, GOST R ISO 10893-5-2016, GOST ISO 17638-2018, RD 34.17.102-88 and RD-13-05-2006; Devices of the MANUL series (UNM-300/2000 and others) are approved for use by the Russian Railways. Scope of application: Magnetic particle flaw detection is indispensable where quality control of various critical and loaded assemblies and parts is required, detection of surface defects that occur during their production, storage and operation. The device may be in demand: at factories for the production and repair of automotive, aviation and railway equipment, metro enterprises, military-industrial complex (inspection of shafts, axles, wheel pairs, pistons, beams, springs, etc.); in civil and military shipbuilding, elevator and crane enterprises (control of rigging equipment, hooks, etc.); at pipe rolling plants (determination of defects in rolled products); in the oil and gas, chemical industry (inspection of welds of equipment operating under pressure). The UNM-300/2000 portable magnetic particle flaw detector has a relatively small weight and dimensions, which allow it to be used as a stationary or portable device in specialized quality control laboratories or in ordinary workshops, garages, hangars, locomotive depots or warehouses. The UNM 300/2000 device, as well as other means of magnetic powder control, are normally used together with auxiliary equipment for the preparation and application of magnetic powder (suspension), for fixing the indicator pattern, magnetometers for determining residual magnetization, visual inspection means – magnifiers and endoscopes, as well as with ultraviolet irradiators in the case of fluorescent powders. Technical specifications Magnetization currents Variable, Pulse, Rectified (only for solenoid and electromagnet) The measurement error of the magnetization current is no more than 10%. characteristics of the pulse current The repetition frequency of unipolar current pulses during magnetization and of multipolar current pulses during demagnetization is (2 ± 0.2) Hz. The duration of the current pulses is at least 1.5 ms. Magnetic characteristics of the solenoid The maximum alternating magnetic field in the center of a single solenoid is at least 100 A/cm. The maximum alternating magnetic field on the axis in the center between two solenoids located at a distance of 200 mm is at least 60 A/cm. The maximum permanent magnetic field in the center of a single solenoid is at least 80 A/cm. The maximum permanent magnetic field on the axis in the center between two solenoids located at a distance of 200 mm is at least 50 A/cm. Values of magnetization currents The maximum alternating magnetization current in the unwound cable 6 m × 50 mm2 and on the electrical contacts is at least 1000 A. The maximum pulse magnetization current in an unwound cable of 4 m × 10 mm2 and on electrical contacts is at least 2000 A. The current adjustment range in the solenoids and the electromagnet is from 0.5 to 4.5 A. Characteristics of the electromagnet The maximum alternating magnetic field in the air gap of the electromagnet depending on the interpolar distance is as follows: - in the 140 mm gap: at least 75 A/cm; - in the 40 mm gap: at least 300 A/cm. The maximum constant magnetic field in the air gap of the electromagnet depending on the interpolar distance is as follows: - in the 140 mm gap: at least 100 A/cm; - in the 40 mm gap: at least 400 A/cm. Operating mode The operating mode is cyclic: magnetization/pause. The magnetization time is adjustable from 1 to 40 s. The demagnetization time is adjustable from 5 to 60 seconds. Demagnetization of details is performed automatically. The time of setting the operating mode is no more than 15 seconds. The duration of continuous operation is at least 8 hours. Power supply parameters The device is powered by an alternating current network with a voltage of 220 V and a frequency of 50 Hz. The power consumed from the network is no more than 5 kVA. weight and size characteristics Overall dimensions of the device (w × h × d) – no more than 267×245×465 mm. The weight of the device is not more than 50 kg. Other characteristics The average worktime before failure is at least 12500 hours. The average recovery time is no more than 6 hours. The average service life of the device is at least 10 years. Compliance with standards The device fully complies with the requirements of GOST R 56512-2015, GOST R 53700-2009 (ISO 9934-3:2002), GOST R 50.05.06-2018, GOST R ISO 10893-5-2016, GOST ISO 17638-2018, RD 34.17.102-88 and RD-13-05-2006 in terms of the requirements for magnetizing devices and magnetic particle flaw detectors. Identification of the load. It performs automatic identification of the types of connected load: cables, solenoids and electromagnet. Control of the connected load current It allows you to control the current of the connected AC/DC electromagnets and solenoids.
Produced in: Moscow
VD-12NFP Eddy Current Flaw Detector with 2 converters
VD-12NFP Eddy Current Flaw Detector with 2 converters
from 292 500 ₽
The device allows you to detect surface defects like cracks, visualizing the signal from the continuity interruptions on the display. The design of the flaw detector allows to determine with high reliability the exact location and depth of defects even on rough surfaces of flat and curved shape, including under a layer of corrosion or in the presence of a protective coating of the controlled area of the product with a thickness of up to 3 mm. The principle of operation of the VD-12NFP eddy current flaw detector: The principle of operation of the VD-12NFP eddy current flaw detector is based on the phenomenon of electromagnetic induction. An alternating magnetic field created in the primary coil of the converter by means of a sinusoidal voltage generator excites eddy currents in the controlled product. A parasitic magnetic field formed by eddy currents at the locations of defects affects the measuring unit (two signal coils connected in series) of the converter, creating an electromotive force in it. The amplitude and phase of the secondary signal carries information about the properties of the defect and the position of the transducer relative to the surface of the controlled product. The output signal from the measuring unit of the converter, after amplification and processing using a microprocessor, is displayed on the readout of the device, and is also stored in the memory block for subsequent transmission to a personal computer. In addition, information about the defects is displayed on a piezoelectric bell used as an audio indicator. Design, features and advantages of the VD-12NFP eddy current control device: The VD-12NFP eddy current flaw detector is a portable device capable of working both in a desktop and in a suspended position in a special bag-case. This ensures convenient operation of the device in a variety of conditions: in the laboratory, in the factory shop or during field tests. The flaw detector consists of an electronic unit with controls and display of test results, as well as three replaceable converters with wear-resistant corundum tips connected to the electronic unit using a connector. The choice of the desired converter depends on the magnetic properties of the material. For the control of parts with grooves, a converter with an inclined tip is offered. The device is powered by 4 AA batteries located in the battery compartment of the electronic unit. The advantages of the flaw detector include: - a screen for visualizing the signal during measurement; - light weight and compact dimensions that allow you to use the device in almost any conditions; - the ability to control the quality of products of various curvature and surface roughness even in the presence of a protective coating or a layer of corrosion; - wear resistance of converters, which is important when monitoring products with increased surface roughness (up to Rz£320); - automatic detection of the type of converter when connected, as well as the presence of built-in memory for storing control results; - the possibility to transfer data to a personal computer for storing or printing control protocols. Scope of application: Portability, high productivity, the ability to work with curved and rough surfaces, as well as the fact that the operation of the flaw detector is practically unaffected by humidity, pressure and contamination of the gas environment or the surface of the controlled product with non-conductive substances ensure the versatility of the device for detecting cracks in various materials. The eddy current flaw detector VD-12NFP is actively used in heavy industry for diagnostics of metal structures, assemblies and mechanisms for various purposes in factory workshops or laboratories, including at enterprises of railway transport, automotive industry, mechanical engineering, pipelines and metal structures. The VD-12NFP flaw detector can be used with equal success in the field, factory workshops, depots, laboratories and workshops to monitor the current condition, as well as to assess the degree of wear, the possibility and duration of further operation of such products made of metals and alloys as over-spring beams, wagon wheels, auto coupler housings, side frames, wheel couples and others. Distinctive features: • control of parts with surface roughness up to Rz320 due to wear-resistant corundum tips; • assessment of the degree of danger (depth) of the defect; • automatic detection of the converter type; • microprocessor control; • 5 universal programs for saving settings; • capable of detecting defects with a depth of 0.3 mm • The angle of deviation of the converter from the normal to the working surface up to 60° • Operating frequency of 70 kHz; • Maximum working clearance of 3mm; • visualization of the signal from the defect; • built-in memory for storing control results • Equipped with a Bluetooth 2.0 wireless communication module, which allows you to transmit control results and control the flaw detector at a distance of up to 20m; • The possibility of forming a control protocol based on the data transmitted to the PC; • Temperature range from 0°C to +40°C; • The design allows you to work with the flaw detector without removing it from the bag-case. Basic kit: Ia5.173.016: 1 electronic unit Ia5.125.031: 1 converter, type 1; marked as (•) Ia5.125.030: 1 converter, type 2; marked as (••) Ia2.706.002: the KOIDZ-VD set of samples with a passport (consisting of: Ia8.896.034: 1 piece; Ia8.896.035: 1 piece; Ia8.896.035-01: 1 piece) - A certificate of verification. 4 AA batteries 1 charger 1 small-sized phone 1 CD with software 1 special key 1 bag-case A calibration certificate is issued for the VD-12NFP flaw detector. 1 passport 1 operating manual 1 calibration instruction
Produced in: Moscow