Поиск

3161 тов.
Вид:
  • Выбрано: 0
    Применение
    Загрузка...
  • Выбрано: 0
    Название
    Загрузка...
  • Выбрано: 0
    Компания
    Загрузка...
  • Выбрано: 1
    Производство
    Загрузка...
  • Выбрано: 0
    Дополнительно
    Загрузка...
Все фильтры
  • 33
    Применение
    Загрузка...
  • 555
    Название
    Загрузка...
  • 157
    Компания
    Загрузка...
  • Производство
    Загрузка...
  • 169
    Дополнительно
    Загрузка...
Вид:
3161 тов.
Преобразователь МАГ-6-Д (О2, NH3, SO2)
Преобразователь МАГ-6-Д (О2, NH3, SO2)
Диапазон измерения объемной доли диоксида углерода — вариант 1, % от 0,0 до 1,0 Диапазон измерения объемной доли диоксида углерода — вариант 2, % от 0,0 до 10,0 Диапазон измерения объемной доли кислорода — вариант 1, % от 0,0 до 30,0 Диапазон измерения объемной доли кислорода — вариант 2, % от 0,0 до 100,0 Диапазон измерения объемной доли метана, % от 0,0 до 5,0 Диапазон измерения массовой концентрации монооксида углерода, мг/м3: от 0 до 500 Диапазон измерения массовой концентрации аммиака, мг/м3 от 0 до 70 Диапазон измерения массовой концентрации сероводорода, мг/м3 от 0 до 140 Диапазон измерения массовой концентрации диоксида серы, мг/м3 от 0 до 50 Диапазон измерения массовой концентрации диоксида азота, мг/м3 от 0 до 20 Пределы основной погрешности измерения объемной доли диоксида углерода, %, где Свх – объемная доля диоксида углерода на входе газоанализатора — от 0,0 до 1,0 %, % ±(0,02+0,05·Cвх) Пределы основной погрешности измерения объемной доли диоксида углерода, %, где Свх – объемная доля диоксида углерода на входе газоанализатора — от 0,0 до 10,0 %, % ±(0,1+0,05·Cвх) Пределы основной погрешности измерения объемной доли кислорода — от 0,0 до 30,0 %, % ±0,4 Пределы основной погрешности измерения объемной доли кислорода — от 0,0 до 100 %, % ±1,0 Пределы основной погрешности измерения объемной доли метана — от 0,0 до 2,0 %, % ±0,2 Пределы основной погрешности измерения объемной доли метана — Св. 2,0 до 5,0 %, % ±10 Пределы основной погрешности измерения массовой концентрации монооксида углерода — от 0,0 до 20 мг/м3, мг/м3 ±4 Пределы основной погрешности измерения массовой концентрации монооксида углерода — Св. 20 до 500 мг/м3, % ±20 Пределы основной погрешности измерения массовой концентрации аммиака — от 0,0 до 20 мг/м3, мг/м3 ±4 Пределы основной погрешности измерения массовой концентрации аммиака — Св. 20 до 70 мг/м3, % ±20 Пределы основной погрешности измерения массовой концентрации сероводорода — от 0,0 до 10 мг/м3, мг/м3 ±2 Пределы основной погрешности измерения массовой концентрации сероводорода — Св. 10 до 140 мг/м3, % ±20 Пределы основной погрешности измерения массовой концентрации диоксида серы — от 0,0 до 10 мг/м3, мг/м3 ±2 Пределы основной погрешности измерения массовой концентрации диоксида серы — Св. 10 до 50 мг/м3, % ±25 Пределы основной погрешности измерения массовой концентрации диоксида азота — от 0,0 до 2 мг/м3, мг/м3 ±0,5 Пределы основной погрешности измерения массовой концентрации диоксида азота — Св. 2 до 20 мг/м3, % ±25 Пределы допускаемой дополнительной погрешности газоанализатора от изменения температуры окружающей и анализируемой сред на каждые 10°С от условий, при которых проводилось определение основной погрешности, в долях от пределов допускаемой основной погрешности — кислород 1 Пределы допускаемой дополнительной погрешности газоанализатора от изменения температуры окружающей и анализируемой сред на каждые 10°С от условий, при которых проводилось определение основной погрешности, в долях от пределов допускаемой основной погрешности — монооксид углерода, диоксид углерода, аммиак, сероводород, диоксид серы, диоксид азота 0,5 Пределы допускаемой дополнительной погрешности газоанализатора от изменения температуры окружающей и анализируемой сред на каждые 10°С от условий, при которых проводилось определение основной погрешности, в долях от пределов допускаемой основной погрешности — метан 0,2 Пределы допускаемой дополнительной погрешности газоанализатора от изменения давления окружающей и анализируемой сред на каждые 3,3 кПа от условий, при которых проводилось определение основной погрешности, в долях от пределов допускаемой основной погрешности — кислород, диоксид углерода, метан 0,7 Пределы допускаемой дополнительной погрешности газоанализатора от изменения давления окружающей и анализируемой сред на каждые 3,3 кПа от условий, при которых проводилось определение основной погрешности, в долях от пределов допускаемой основной погрешности — монооксид углерода, аммиак, сероводород, диоксид серы, диоксид азота 0,2 Номинальное время установления показаний Т0,9ном, с — кислород, монооксид углерода, диоксид углерода, метан 30 Номинальное время установления показаний Т0,9ном, с — аммиак, сероводород, диоксид серы, диоксид азота 60 Рекомендуемый расход анализируемого газа, л/мин 0,1-0,5 Время прогрева газоанализатора, мин, не более 5 Рабочие условия прибора — температура воздуха, °С от -20 до +40 Рабочие условия прибора — относительная влажность, % (без конденсации влаги) от 10 до 95 Рабочие условия прибора — атмосферное давление, кПа от 84 до 106 Количество точек автоматической статистики нет Время непрерывной работы газоанализатора от полностью заряженных аккумуляторов, ч, не менее нет Напряжение питания, В от 4 до 6 (от 7 до 28 без взрывозащиты) Потребляемая прибором мощность, Вт, не более 1 Интерфейс связи с компьютером нет Длина линии связи USB, м, не более нет Масса прибора, кг, не более 0,4 Габаритные размеры прибора, мм, не более 130х90х35 Средний срок службы, лет 5 Средняя наработка на отказ, ч (без учета срока службы сенсоров) 8000
ЭКСИС
город Зеленоград
Произведено в: Москва, Зеленоград
МХ-10 Магнитометр
МХ-10 Магнитометр
от 80 400 ₽
Магнитометр МХ-10 является вспомогательным средством при проведении магнитопорошкового контроля с использованием постоянных магнитов, электромагнитов выпрямленного тока способом приложенного поля, а также при контроле способом остаточного намагничивания согласно требованиям действующей нормативной документации. Магнитометр МХ-10 отвечает требованиям в области неразрушающего контроля для основных отраслей промышленности: атомной, энергетической, нефтегазового комплекса, общего и специального машиностроения, железнодорожного транспорта, авиакосмической промышленности, лифтового и кранового хозяйства и т.д. Магнитометр МХ-10 представляет собой электронный измерительный блок с выносным измерительным преобразователем, в основе работы которого лежит эффект Холла. Конструкция прибора позволяет измерять как нормальную, так и тангенциальную составляющую вектора магнитной индукции непосредственно на поверхности детали. Измеренное значение величины индукции магнитного поля выводится на цифровой индикатор электронного блока. Особенности и преимущества Обновленная версия магнитометра МХ-10 построена на современной элементной базе, что позволило значительно улучшить его рабочие характеристики, снизить погрешность и расширить диапазон измерений (см. Таблицу технических характеристик). Прибор способен работать в двух режимах: Режим постоянного измерения. Это удобно при проведении большого количества измерений в течение небольшого промежутка времени. Режим автоматического отключения через 1 минуту после измерения. Позволяет экономить заряд устройства, что особенно важно в полевых условиях. Наличие схемы термокомпенсации обеспечивает стабильные показания измерений при любом изменение температуры. Среди других особенностей можно отметить: Минимальные габариты измерительного преобразователя Холла для магнитометра МХ-10 позволяют производить измерение индукции магнитного поля в пазах, проточках, угловых переходах, т. е. на тех участках контролируемого изделия, которые являются концентраторами напряжений и наиболее опасны с точки зрения образования трещин; Широкий диапазон измерений величины индукции магнитного поля; Наименьшую среди аналогов погрешность измерения во всем интервале рабочих температур; Удобство измерения выносным измерительным преобразователем в различных плоскостях; Низкое энергопотребление и, как следствие длительное время работы; Невысокую стоимость по сравнению с аналогичными моделями на рынке; Компактные габариты; Гарантию изготовителя – 12 месяцев; Прибор внесен в государственный реестр СИ, RU.C.27.004.A № 36079 от 01.09.2009 г и поставляется с методикой поверки. Магнитометр МХ-10 (миллитесламетр) также внесен в реестр средств измерений, испытательного оборудования и методик измерений, применяемых в ОАО «РЖД». Область применения 1. Проверка режимов намагничивания контролируемых деталей с использованием постоянных магнитов, электромагнитов выпрямленного тока способом приложенного поля, а также при контроле способом остаточного намагничивания, путем измерения тангенциальной и нормальной составляющих вектора напряженности магнитного поля в одной или нескольких точках на поверхности этих деталей. Количество точек, в которых измеряют напряженность магнитного поля, и их местоположение на контролируемой поверхности зависят от формы детали, а также от типа и конструкции применяемого намагничивающего приспособления. 2. Контроль намагниченности деталей перед сваркой. При электродуговой сварке неразмагниченных деталей наблюдается эффект «магнитного дутья», т.е. отклонение электрической дуги от оси электрода, блуждание конца дуги по изделию, что приводит к разбрызгиванию металла при сварке, ухудшению качества шва. Поэтому перед проведением сварки необходимо измерить уровень и направление намагниченности деталей и размагнитить их при необходимости. 3. Проверка остаточной намагниченности после проведения магнитопорошкового контроля (МПК) Размагничивание и проверка остаточной намагниченности ответственных, трущихся деталей, а также деталей, находящихся с ними в контакте после сборки, прописано в требованиях проведения МПК и является технологическим этапом контроля. 4. Контроль намагниченности перед сборкой различных конструкций. Намагниченные детали могут влиять на работу устройств автоматики, вызывать погрешности в показаниях приборов, аппаратуры. Намагниченность может вызывать накопление продуктов износа в подвижных сочленениях, вызывать отрицательное влияние на последующие технологические операции. В связи с возможными нежелательными последствиями детали размагничивают и проверяют качество их размагничивания. 5. Контроль счетчиков газо- и водоснабжения. Предприятия ЖКХ также могут заинтересоваться прибором. Известно, что существующие счетчики расхода газа или воды можно легко «обмануть» с помощью сильных постоянных магнитов, которые снижают скорость вращения датчиков расхода. Есть разные способы выявления таких хищений. Одним из них является контроль остаточной намагниченности счетчиков с помощью магнитометров. Измеряемая величина не должна существенно превышать магнитное поле Земли, иначе можно сделать вывод о несанкционированном вмешательстве в работу устройства. Основные технические характеристики Диапазон измерений, мТл от 0,1 до 100 Пределы допускаемой основной абсолютной погрешности измерения, мТЛ D = 0,02ВИ +0,05, где ВИ - показания магнитометра в мТл Питание батарея или аккумулятор типа РР3 (Крона) Ток потребления, мА, не более 15 Продолжительность непрерывной работы (от полностью заряженных аккумуляторов), ч, не менее 20 Габаритные размеры, мм: – электронного блока (ДхШхТ) 120х60х25 – измерительного преобразователя (Диаметр х Длина) 18х173 Масса, г, не более 160 Рабочая температура окружающего воздуха, °C -10…+40
Произведено в: Москва
Вакуумно-газонаполненная электропечь для химико-термической обработки изделий ВЭ-2—20-ПЗ
Вакуумно-газонаполненная электропечь для химико-термической обработки изделий ВЭ-2—20-ПЗ
Ресурс работы печи при температуре 1800 ОС не менее 500 часов; кол-во термоциклов, не менее 100.
ВакЭТО
п. Мосрентген, пос. завода Мосрентген
Произведено в: Москва
ТЕТРОН-80001ЕП Программируемый источник питания 800 вольт 1 ампер
ТЕТРОН-80001ЕП Программируемый источник питания 800 вольт 1 ампер
от 132 917 ₽
ТЕТРОН-80001ЕП является программируемым источником питания с цветным мультидисплеем, отображающим как установленные, так и реальные значения напряжения и тока. Также на дисплей выводится мощность, таймер, установки защиты и многое другое. Выходное напряжение составляет 800 вольт, выходной ток 1 ампер. Максимальная мощность 800 Ватт. Активное воздушное охлаждение с термодатчиком держит скорость вращения вентилятора на необходимом для текущего момента уровне, что позволяет значительно снизить уровень шума. Удобное управление с передней панели. Шесть быстрых кнопок памяти. Кнопка отключения нагрузки. Максимальный уровень защиты: от превышения напряжения (OVP), превышения тока (OCP), превышения мощности (OP), перегрева (OTP) и короткого замыкания (КЗ). Интерфейс дистанционного управления: RS-485 (опционально RS-232 и USB). Поддержка ModBus-RTU команд и программное обеспечение для PC. В комплекте с источником поставляется паспорт с отметкой ОТК и сертификат о калибровке.
Тетрон
Москва
Произведено в: Москва
ТЕТРОН РСП-4-11 Реостат сопротивления 70 Ом 2,6 А
ТЕТРОН РСП-4-11 Реостат сопротивления 70 Ом 2,6 А
от 29 883 ₽
Технические характеристики: Мощность до 500 Ватт Номинальное сопротивление 70 Ом Максимальный ток 2,6 А Погрешность 10% Максимальное рабочее напряжение постоянное до 400В, переменное до 380В Температурный коэффициент ± 350 ppm/°C Сопротивление изоляции не менее 1 ГОм, 2500В DC в течение 1 минуты Перегрузочная способность 100% превышение мощности в течение 5с Режим работы продолжительный Рабочее положение произвольное Условия эксплуатации -10°C – 35°C, влажность до 80%, окружающая среда без горючих газов, насыщенного водяного пара, частиц проводящей пыли. Срок службы 20 лет Габаритные размеры 485х160х100 мм Масса 3,2 кг Технические условия (ТУ) ТУ 27.90.60-002-48526697-2018
Тетрон
Москва
Произведено в: Москва
Набор реагентов EGFR 8
Набор реагентов EGFR 8
Набор реагентов может быть использован в клинико-диагностических лабораториях медицинских учреждений и научно-исследовательской практике. Исследуемый материал: фиксированные в формалине парафинизированные образцы опухолей больных немелкоклеточным раком легкого ПРОБОПОДГОТОВКА (не входит в состав набора): ПРОБА-ПК для предварительной обработки биоматериала протеиназой К и ПРОБА-НК-ПЛЮС для последующего выделения ДН
Произведено в: Москва
Преобразователь ИТ-2102
Преобразователь ИТ-2102
от 45 276 ₽
Микропроцессорный прибор, предназначенный для преобразования выходного напряжения (ЭДС электродной системы) чувствительных элементов потенциометрических анализаторов жидкости в единицы активности ионов водорода (рН), а также в унифицированные электрические выходные сигналы постоянного тока.
Произведено в: Москва
Источник бесперебойного питания в стойку 1 кВА ИДП-1-1/1-1-220-ТА-1U
Источник бесперебойного питания в стойку 1 кВА ИДП-1-1/1-1-220-ТА-1U
от 78 810 ₽
Представляем Вам стоечный ибп серии ИДП-1-1/1-1-220-ТА-1U сверхкомпактный источник бесперебойного питания серии ИДП-1Т высотой всего 1U. Данный телекоммуникационный ИБП двойного преобразования (On-Line) имеет встроенные батареи в своем корпусе 1U для обеспечения автономии в течение 5 минут. Основное предназначение данного ИБП - это защита телекоммуникационного оборудования, сетевого оборудования, установленных в 19" шкафах и стойках. Формфактор стоечного ибп - 1U Входные параметры Тип сети однофазная Номинальное напряжение 220 В Диапазон входных напряжений без перехода на батарею при нагрузке 100% <75% <50% 160-300 В 140-300 В 110-300 В Частота входного напряжения 50±10 Гц Входной коэффициент мощности 0,99
РУСЭЛТ
Москва
Произведено в: Москва
Дозиметр рентгеновского излучения клинический ДРК-1М-КТ
Дозиметр рентгеновского излучения клинический ДРК-1М-КТ
Назначение: измерение произведения воздушной кермы на длину с последующим расчетом томографического индекса дозы CTDI (с использованием фантома CTDI) для последующего расчета эффективной дозы, получаемой пациентом; контроль стабильности работы медицинских рентгеновских аппаратов в течение времени их эксплуатации; расчет показателя дозы компьютерного томографа (ПДКТ) по ГОСТ Р МЭК 61223-2-6-2001.
Доза
город Зеленоград
Произведено в: Москва
Частотомер универсальный Ч3-95
Частотомер универсальный Ч3-95
Частотомер способен работать как автономно, так и в составе автоматизированных измерительных систем c интерфейсами типаUSВ,RS-232, ЕТНЕRNЕТ и IEEE-488 (КОП). Технические характеристики Частота и период синусоидальных сигналов (входы А, В) 0,001 Гц - 300 МГц Частота и период видеоимпульсных сигналов (входы А, В) 0,001 Гц - 300 МГц Частота непрерывных синусоидальных колебаний (вход С) (37,5 – 78,33) ГГц Длительность импульсов 5 нс - 1000 с Длительность фронта, спада импульсов 5 нс - 100 мкс Временной интервал от -1000 до 1000 с Разрешающая способность измерения частоты 2х10-10 с/Гсч Диапазон установки уровней запуска (входы А, В) от -2 до 2 В Погрешность установки уровней запуска (входы А, В) ± 0,01 В Уровень входного сигнала: •для синусоидального сигнала (входы А, В) (0,03 - 10,0) В •для видеоимпульсного сигнала (входы А, В) (0,1 - 10,0) В •для синусоидального сигнала (вход С) 0,5 мкВт - 5 мВт Входное сопротивление •входы А, В (50±2,5) Ом; (1±0,1) МОм/100 пФ •вход С (50±2,5) Ом Номинальное значение частоты опорного кварцевого генератора 10 МГц Относительная погрешность по частоте кварцевого генератора, не более ± 2х10-7 за 24 месяцев Интервал рабочих температур от минус 10 до 40°С Питание от сети переменного тока 220 В, 50 Гц Потребляемая мощность, не более 100 ВА Габаритные размеры, мм 299x130,5x433 Масса, не более 8,5 кг.
Произведено в: Москва
Высокий лабораторный стол со столешницей из химстойкого пластика НВ-1200 ЛСПв
Высокий лабораторный стол со столешницей из химстойкого пластика НВ-1200 ЛСПв
от 15 425 ₽
Лабораторный стол со столешницей из химстойкого пластика НВ-1200 ЛСПв НВ-1200 ЛСПв — это высокий лабораторный стол с металлической рамой и шириной столешницы 1090 мм. Предназначен для работы стоя (высота стола — 850 мм). Габариты стола в собранном виде (Ш×Г×В): 1090×700×850 мм. Столешница: химически стойкий пластик. Столы НВ-1200 сделаны на основе металлического каркаса, окрашенного прочной порошковой краской. Боковые ламинированные панели (ЛДСП толщиной 16 мм) окантованы на фасаде ПВХ-кромкой толщиной 2 мм, что увеличивает их ударостойкость и механическую прочность. Столешница выполнена из химстойкого пластика. Он влагостоек, устойчив к длительному воздействию концентрированных кислот и щелочей. Ограниченно стоек к высокой температуре и к длительному воздействию органических растворителей. На такую столешницу не следует ставить печи или сушильные шкафы. Хороший выбор для учебных практикумов, аналитических и медицинских лабораторий. Ножки стола регулируются по высоте в пределах двух сантиметров, позволяя расположить его даже на достаточном неровном полу. Преимущества столов НВ-1200 ЛСПв Бюджетное решение для лабораторий, которым важна надёжность и долговечность мебели. Подходит для небольших по размеру помещений. Нержавеющая сталь хорошо подходит для биологических или медицинских лабораторий. Удобно работать стоя: высота рабочей поверхности от пола равна 85 см, это высота стандартного кухонного гарнитура. Применение столов НВ-1200 ЛСПв Столы серии НВ используются в лабораториях самого широкого профиля: на предприятиях пищевой и лёгкой промышленности, в научных и учебных практикумах, в школьных кабинетах химии, центрах контроля качества, медицинских организациях и многих других.
НВ-ЛАБ
Москва
Произведено в: Москва, Московская область
Многокомпонентный газоанализатор МАГ-6 С (CO, NH3, H2S)
Многокомпонентный газоанализатор МАГ-6 С (CO, NH3, H2S)
Диапазон измерения массовой концентрации монооксида углерода, мг/м3: от 0 до 500 Диапазон измерения массовой концентрации аммиака, мг/м3 от 0 до 70 Диапазон измерения массовой концентрации сероводорода, мг/м3 от 0 до 140 Пределы основной погрешности измерения массовой концентрации монооксида углерода — от 0,0 до 20 мг/м3, мг/м3 ±4 Пределы основной погрешности измерения массовой концентрации монооксида углерода — Св. 20 до 500 мг/м3, % ±20 Пределы основной погрешности измерения массовой концентрации аммиака — от 0,0 до 20 мг/м3, мг/м3 ±4 Пределы основной погрешности измерения массовой концентрации аммиака — Св. 20 до 70 мг/м3, % ±20 Пределы основной погрешности измерения массовой концентрации сероводорода — от 0,0 до 10 мг/м3, мг/м3 ±2 Пределы основной погрешности измерения массовой концентрации сероводорода — Св. 10 до 140 мг/м3, % ±20 Рекомендуемый расход анализируемого газа, л/мин 0,1-0,5 Время прогрева газоанализатора, мин, не более 5 Рабочие условия прибора — температура воздуха, °С от -20 до +40 Рабочие условия прибора — относительная влажность, % (без конденсации влаги) от 10 до 95 Рабочие условия прибора — атмосферное давление, кПа от 84 до 106 Напряжение питания, В, 50±1 Гц 220±22 Потребляемая прибором мощность, Вт, не более 15 Нагрузочная способность реле 7А при 220В Диапазон изменения выходного тока унифицированных токовых выходов, мА 4…20, 0…5, 0..20 Дискретность изменения выходного тока унифицированных токовых выходов, мкА 19.5, 4.9, 19.5 Максимальное сопротивление нагрузки унифицированных токовых выходов, Ом 300, 1000, 300 Интерфейс связи с компьютером RS-232, RS-485, USB Длина линии связи RS—232, м, не более 15 Длина линии связи RS—485, м, не более 1000 Длина линии связи USB, м, не более 3 Масса прибора, кг, не более 1 Габаритные размеры прибора, мм, не более 178х180х75 Средний срок службы, лет 5
ЭКСИС
город Зеленоград
Произведено в: Москва, Зеленоград